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1. Introduction 

Since its development almost 20 years ago, dissipative particle dynamics (DPD) (1, 2) has 
become a robust tool for simulating soft condensed matter including polymers, surfactants, and 
colloids (see e.g., Brennan and Lísal [3] and references therein). Though often used to simulate 
polymer systems, DPD is now being applied in other areas such as biophysics (4) and shock 
physics (5). Moreover, DPD models have advanced beyond the typical purely repulsive models 
(e.g., references 6–9), including augmentations that capture noncentral shear forces (7, 10). 

When applying the DPD method, numerical integration of the equations-of-motion (EOM) is a 
key consideration, where the stochastic component requires special attention. Efficient and 
accurate integration schemes are required to maintain reasonable time step sizes, thus allowing 
for the simulation of mesoscale events. Moreover, the advent of conservative forces extending 
beyond purely-repulsive models that contain attractive character further supports the need for 
effective integration schemes. However, the integration is a nontrivial task due to the pairwise 
coupling of particles through the random and dissipative forces (11). Furthermore, self-consistent 
solutions are often necessary because the dissipative forces and the relative velocities of the 
particles are interdependent, where the considerable computational cost associated with this task 
has motivated the development of various integration schemes. Recent independent studies by 
Nikunen et al. (11) and Chaudhri and Lukes (12) assessed the quality and performance of several 
applicable integration schemes for constant-temperature DPD, specifically, the velocity-Verlet-
based integrator (13), self-consistent Pagonabarraga-Hagen-Frenkel integrator (14), self-
consistent velocity-Verlet integrator (15, 16), den Otter-Clarke integrator (17), first- and second-
order Shardlow-splitting algorithms (SSAs) (18), and Lowe-Andersen integrator (19). Still other 
schemes are possible such as the Peters integrator (20) and a scheme similar to the SSA 
developed by Litvinov et al. (21) for highly dissipative smoothed-particle dynamics. Further,  
De Fabritiis et al. (22) developed numerical integrators for stochastic models using the Trotter 
expansion, and later applied the stochastic Trotter expansion to the constant-temperature DPD 
method (23). They tested the DPD-Trotter integration scheme on a DPD fluid and found 
accuracy comparable to the SSA but with a 10% speed-up. The consensus from all of these 
studies identified the SSA (18) as the best-performing approach. 

The SSA decomposes the EOM into differential equations that correspond to the deterministic 
dynamics and the elementary stochastic differential equations that correspond to the stochastic 
dynamics. In the original SSA formulation, both types of differential equations are integrated via 
the velocity-Verlet algorithm (18), where the stochastic dynamics are additionally solved in an 
implicit manner that conserves linear momentum. Previously, the SSA had been applied only to 
the constant-temperature DPD method, while an SSA-inspired approach was implemented for a 
method in the spirit of the energy-conserving DPD method (5).
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In this work, we modify the original SSA formulation for constant-temperature DPD systems of 
unequal-mass particles, followed by the development of an alternative algorithm to implicitly 
integrate the stochastic dynamics. The SSA is formulated for both a velocity-Verlet scheme and 
an implicit scheme, where the velocity-Verlet scheme consistently performed better. For 
completeness, the derivations of the Fokker-Planck equation (FPE) and the fluctuation-
dissipation theorem (FDT) are included. 

2. Formulation of DPD at Fixed Temperature Using Shardlow-Like Splitting 
Numerical Discretization 

2.1 General Formulation of DPD 

DPD particles are defined by a mass im , position ir , and momentum ip . The particles interact 
with each other via a pairwise force ijF  that is written as the sum of a conservative force C

ijF , 

dissipative force D
ijF , and random force R

ijF : 

 R
ij

D
ij

C
ijij FFFF ++= . (1) 

C
ijF  is given as the negative derivative of a coarse-grain potential CG

iju , expressed as 

 
ij

ij

ij

CG
ijC

ij rr
u r

F
d

d
−=  (2) 

where jiij rrr −=  is the separation vector between particle i  and particle j , and ijijr r= . The 

remaining two forces, D
ijF  and R

ijF , can be interpreted as a means to compensate for the degrees 

of freedom neglected by coarse graining. The conservative force is not specified by the DPD 
formulation and can be chosen to include any forces that are appropriate for a given application, 
including multibody interactions (e.g., references 6, 8, and 24]).  D

ijF  and R
ijF  are defined as 

 ( )
ij

ij
ij

ij

ij
ij

D
ij

D
ij rr

r
r

v
r

F 









⋅−= ωγ  (3) 

and 

 ( )
ij

ij
ijij

R
ij

R
ij r

Wr
r

F ωσ= , (4) 

where ijγ  and ijσ  are the friction coefficient and noise amplitude between particle i  and  

particle j , respectively, and 
j

j

i

i
ij mm

ppv −= and ijW  are independent Wiener processes such that  

jiij WW = . The weight functions ( )rDω  and ( )rRω  vanish for crr ≥ , where cr  is the cutoff radius.
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Note that C
ijF is completely independent of D

ijF  and R
ijF , while D

ijF  and R
ijF  are not independent  

but rather are coupled through a fluctuation-dissipation relation. This coupling arises from the 
requirement that in the thermodynamic limit, the system samples the corresponding probability 
distribution. The necessary conditions can be derived using an FPE (25, 26), which is presented 
in this work. 

2.2 Constant-Temperature DPD 

For constant-temperature and constant-volume conditions, the evolution of DPD particles in time 
t  is governed by the following EOM: 

 t
mi

i
i dd pr =  (5a) 

( )Ni ,...,1= ,   

 
( ) t

ij

R
ij

D
ij

C
iji dd ∑

≠

++= FFFp  (5b)
 

where N is the total number of particles. This EOM set conserves total momentum ∑=
i

ipP as a 

consequence of pairwise additivity of the conservative, dissipative, and random forces. 

Español and Warren (27) showed that this system samples the canonical probability distribution 
and obeys the FDT if the following relations hold: 

 
( ) ( )[ ]2

B
2 2

rr

Tk
RD

ijij

ωω

γσ

=

=
 , (6) 

where Bk  is the Boltzmann constant and T  is the temperature. For completeness, the FPE and an 
outline of the derivation of the FDT is provided in appendix A. ( )rDω  and ( )rRω  are typically 
chosen (13) as 

 
( ) ( )[ ] ( )

( )c

c
c

RD

rr

rr
r
rrr

≥=

<







−==

0

1
2

2
ωω

 . (7) 

Note that the dependence of the random-force noise amplitude ijσ  on the temperature T  can be 

physically interpreted as the system being in thermal contact with a heat reservoir. 

2.2.1 Numerical Discretization 

Next we review the first-order SSA (18). The original SSA was formulated for systems of 
particles with equal masses (18), while here we provide a formulation for systems with unequal 
masses. The basic idea of the SSA is the decomposition of the EOM (equations 5a and 5b) into 



 4 

differential equations corresponding to the deterministic dynamics and elementary stochastic 
differential equations (SDEs) corresponding to the fluctuation-dissipation contributions. In the 
original SSA formulation, integration of both types of differential equations uses the velocity-
Verlet algorithm (28). 

For the constant-temperature DPD SSA formulation, the conservative terms consist of the 
following differential equations: 

 t
mi

i
i dd pr =  (8a) 

                                                             ( )Ni ,...,1=  , 

 ∑
≠

=
ij

C
iji tdd Fp  (8b) 

while the fluctuation-dissipation terms consist of the elementary SDEs: 

 
i-ji-j

ij
ij

ijR
ij

ij

ij
ij

ij

ijD
ij

i-j

ij

i
W

r
t

rr

pp

rr
v

r
p

dd

ddd

−=

+









⋅−= ωσωγ







 < jieachfor  (9) 

where the superscript ji − indicates that the variation of momenta is considered for a pair of 
interacting particles i  and j only, and jiij WW dd = are the increments of the Wiener processes.  
Note that equation 5b is recovered by adding ∑

≠

−

ij

ji
ipd to equation 8b. 

Both the conservative and the fluctuation-dissipation terms can be solved using velocity-Verlet 
algorithms, where the SSA occurs in the following manner.  First, denote the overall solution 
operator t∆φ  as the stochastic flow map for a time step t∆  corresponding to the dynamics 
defined in equations 5a and b, and further denote C

t∆φ  and diss
jit ,;∆φ  ( )Nji ≤<≤1  as the solution 

operators or flow maps associated with equations 8a and b, and equation 9, respectively. 
(Stochastic flow maps are mathematical constructs that define solutions to SDEs, where the 
solution operators are performed in a successive manner. See Shardlow (18) and references 
therein for further discussion of stochastic flow maps and splitting methods for SDEs.) An 
approximation of t∆φ  for first-order splitting (18) can then be given as 

 C
t

diss
NNt

diss
NNt

diss
jit

diss
t

diss
tt ∆−∆−∆∆∆∆∆ ≅ φφφφφφφ  ,1;,2;,;3,1;2,1; ......  , (10) 

where   denotes a composition of operators. 

For each fluctuation-dissipation term diss
jit ,;∆φ , momenta can be updated using the velocity-Verlet 

scheme (18):
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( ) ( )

ij

ij
ij

R
ij

ij

ij
ij

ij

ijD
ijii r

t
r

t
r

tttt
rr

v
r

pp ςωσωγ
222
∆

+











⋅

∆
−=






 ∆
+ ,

 
(11a)

 

 
( ) ( )

ij

ij
ij

R
ij

ij

ij
ij

ij

ijD
ijjj r

t
r

t
r

tttt
rr

v
r

pp ςωσωγ
222
∆

−











⋅

∆
+=






 ∆
+ ,

 
(11b)

 

 
( ) ( )

ij

ij
ij

R
ij

ij

ij
ij

ij

ijD
ijii r

t
r

tt
r

ttttt
rr

v
r

pp ςωσωγ
222
∆

+











∆+⋅

∆
−






 ∆
+=∆+ ,

 
(11c) 

and
 

 
( ) ( )

ij

ij
ij

R
ij

ij

ij
ij

ij

ijD
ijjj r

t
r

tt
r

ttttt
rr

v
r

pp ςωσωγ
222
∆

−











∆+⋅

∆
+






 ∆
+=∆+ ,

 
(11d)

 
where the superscript ji − has been omitted for notational simplicity, and jiij ςς = is a Gaussian 

random number with zero mean and unit variance that is chosen independently for each pair of 
interacting particles. (The use of t∆  rather than t∆ , in equations 11a–d, is the consequence of 
a discrete Wiener process.)  Equations 11c and d are implicit due to the presence of the 

( )ttij ∆+v  terms on the right side of each equation. However, they can be rewritten in an explicit 

form (18) that eliminates these terms, which are then given as: 

 

( )

ij

ij
ij

R
ij

ij

ij
ij

R
ij

ij

ij

ij
ij

ij

ij

D
ij

ij

D
ij

ii

r
t

r
t

r
tt

rt

ttttt

r

rr
v

r
pp

ςωσ

ςωσ
µ

ωγ
µ

ωγ

2

22
2

122

∆
+













∆+

















 ∆
+⋅

∆+

∆
−






 ∆
+=∆+

,  11e) 

and 

( )

ij

ij
ij

R
ij

ij

ij
ij

R
ij

ij

ij

ij
ij

ij

ij

D
ij

ij

D
ij

jj

r
t

r
t

r
tt

rt

ttttt

r

rr
v

r
pp

ςωσ

ςωσ
µ

ωγ
µ

ωγ

2

22
2

122

∆
−













∆+

















 ∆
+⋅

∆+

∆
+






 ∆
+=∆+

  , (11f) 

where 1 1
ij

i jm m
µ = + .



 6 

As an alternative to the SSA formulation that determines the fluctuation-dissipation terms using 
a velocity-Verlet algorithm, here we also provide a modified SSA, where the velocity-Verlet 
algorithm is replaced by an implicit algorithm based upon the following arguments. For 
conservative systems, the Liouville equation indicates that the flow of system points in phase-
space is incompressible. The velocity-Verlet algorithm is reversible and area-preserving, and 
thus possesses this desirable property for molecular dynamics simulations (29–32). However, 
DPD incorporates dissipative and random forces such that the volume element in phase-space is 
not preserved and the trajectories are not time-reversible. Moreover, the motion of the density of 
system points in phase-space is a Fokker-Planck (diffusion) equation, leading to a physical 
increase of the phase-space volume as the diffusive dynamics irreversibly evolves. Therefore, 
ensuring time reversibility of the integration of diss

jit ,;∆φ  is not necessary. Consequently, we propose 

the following implicit algorithm as an alternative to the velocity-Verlet algorithm to integrate 
this contribution: 

 
( ) ( ) ( )

ij

ij
ij

R
ij

ij

ij
ij

ij

ijD
ijii r

t
r

tt
r

tttt
rr

v
r

pp ςωσωγ ∆+











∆+⋅∆−=∆+

 
(11g) 

and
 

 
( ) ( ) ( )

ij

ij
ij

R
ij

ij

ij
ij

ij

ijD
ijjj r

t
r

tt
r

tttt
rr

v
r

pp ςωσωγ ∆−











∆+⋅∆+=∆+ .

 
(11h)

 

Analogous to the derivation of equations 11e and 11f, equations 11g and 11h can be rewritten in 
an explicit form as: 

( ) ( ) ( )
ij

ij
ij

R
ij

ij

ij
ij

R
ijij

ij

ij
ij

ij

ij
D

ijij

D
ij

ii r
tt

rr
t

rt
t

ttt
rrr

v
r

pp ςωσςωσµ
ωγµ

ωγ
∆+













∆+











⋅

∆+
∆

−=∆+
1

 (11i) 

and 

( ) ( ) ( )
ij

ij
ij

R
ij

ij

ij
ij

R
ijij

ij

ij
ij

ij

ij
D

ijij

D
ij

jj r
tt

rr
t

rt
t

ttt
rrr

v
r

pp ςωσςωσµ
ωγµ

ωγ
∆−













∆+











⋅

∆+
∆

+=∆+
1

. (11j) 

Finally, the conservative term C
t∆φ  is approximated using the velocity-Verlet algorithm, where the 

momenta and positions are updated as
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( ) ( )

( ) ( ) ( )

( ){ }
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m

tt
tttt

ttttt

C
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N
i

C
i

i

i
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C
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,...,1
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22

1

=∆+
∆

+





 ∆
+=∆+

∆+

=






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+

∆+=∆+

∆
+=






 ∆
+

=

Fpp

F

p
rr

Fpp

 

(12)

 

We denote the original SSA given by equation 10, equations 11a, 11b, 11e, 11f, and 12 as  
SSA-VV, while the modified SSA given by equation 10, equations 11i and 11j, and equation 12 
as SSA-I. The following outlines summarize the SSA-VV and SSA-I in a practical form.  By 
comparing these forms, it is evident that the SSA-I requires fewer mathematical operations than 
the SSA-VV and thus is less computationally intensive. However, as demonstrated in section IV, 
the SSA-VV is a better performing integration scheme. Finally, note that for the proposed 
splitting schemes in the limit of vanishing dissipative and random forces, the reversibility of the 
trajectories and the area-preserving property is recovered, as expected. 

(I) Outline of the SSA-VV for constant-temperature DPD: 

1. Stochastic Integration for all ji − pairs of particles: 

(a)   
22
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2. Deterministic Integration no. 1 for Ni ,...,1= : 

(a)   C
iii

t Fpp
2
∆

+←  

(b)  
i

i
ii m

t prr ∆+←
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3. Conservative Force Calculation: { }N
i

C
i 1=F  

4. Deterministic Integration no. 2 for Ni ,...,1= : 
C
iii

t Fpp
2
∆

+←  

 
(II) Outline of the SSA-I for constant-temperature DPD: 

1. Stochastic Integration for all ji − pairs of particles: 

(a)   t
r

t
rrrt

t

ij

ij
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R
ij

ij

ij
ij

R
ijij
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ij
ij

ij

ij
D

ijij
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ij

ii ∆+
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
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




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





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⋅
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rrr
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ωγµ
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


⋅

∆+
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rrr
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2. Deterministic Integration no. 1 for Ni ,...,1= : 

(a)  C
iii

t Fpp
2
∆

+←  

(b)  
i

i
ii m

t prr ∆+←  

3. Conservative Force Calculation: { }N
i

C
i 1=F  

4. Deterministic Integration no. 2 for Ni ,...,1= : 
C
iii

t Fpp
2
∆

+←  

 

3. Computational Details 

The SSA-VV and SSA-I for the constant-temperature DPD method were tested using the 
standard DPD fluid (13), where details of the conservative forces for this model are given in 
appendix B. Both a pure component case and an equimolar binary mixture were tested for the 
DPD fluid model, with system sizes of 10125=N . For these simulations, the following reduced 
units were used: cr  is the unit of length; the mass of a DPD particle is the unit of mass; and the 
unit of energy is TkB . Using these reduced units, we set the maximum repulsion between 
particles i  and j as 25=ija for the pure DPD fluid, and as 25=ija  and 28 for the like and 
unlike ji −  interactions, respectively, for the binary DPD fluid. Further, for all cases, we set the 
noise amplitude 3=ijσ .
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4. Results Comparison of SSA-VV and SSA-I Performance 

For both the pure and equimolar binary DPD fluids, we performed constant-temperature DPD 

simulations at particle density 3==
V
Nρ  and 1=T  using the SSA-VV and SSA-I, where t∆  

was varied from 0.01 to 0.15. For the various time steps and runs of length 5000=runt , figure 1 
(pure fluid) and figure 2 (equimolar binary fluid) compare values of the simulated kinetic 

temperature ∑
=

⋅
=

N

i i

ii
kin mNk

T
1B3

1 pp  to the prescribed T , along with the configurational energy 

per particle u , and virial pressure virP  ( .  denotes an ensemble average). Values of 

( ) TTTkin /− , u  and virP  for t∆ >0.07 begin to significantly diverge and therefore are not 

shown in figures 1 and 2. For both fluids, the SSA-I systematically underestimates T by 
approximately 1%–2% for t∆  below 0.07, but more importantly its performance shows non-
monotonic dependence on t∆ , which is undesirable behavior for a numerical integrator. From a 
practical viewpoint, figures 1 and 2, and the values of other properties such as the radial 
distribution function and self-diffusion coefficient (not shown here), suggest that for all values of 

05.0≤∆t , the results of the constant-temperature DPD simulations are within good agreement 
for both the SSA-VV and SSA-I. 

For completeness, also shown in figures 1 and 2 is the standard velocity-Verlet (SVV) algorithm 
(13) often used for DPD simulations. Comparing the SSA-VV and SVV, we see that 
( ) TTTkin /− is positive and increases with increasing t∆  for both algorithms. However, the 

SSA-VV is superior in comparison with the SVV for both the pure (in agreement with previous 
work [18]) and binary DPD fluids. 
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Figure 1.  (a) The simulated kinetic temperature kinT  and (b) the configurational energy 

per particle u  and the virial pressure virP  of the pure DPD fluid as a function 
of the integration time step t∆  for constant-temperature DPD simulations with the 
SSA-VV, SSA-I, and SVV integrators at 3=ρ  and 1=T .

(a) 

 

(b) 
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Figure 2.  (a) The simulated kinetic temperature kinT  and (b) the configurational energy per 

particle u  and the virial pressure virP  of the equimolar binary DPD fluid as a 
function of the integration time step t∆  for constant-temperature DPD simulations 
with the SSA-VV, SSA-I, and SVV integrators at 3=ρ  and 1=T .

(a) 

  
(b) 
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5. Conclusion 

A comprehensive description of numerical integration schemes based upon the Shardlow-
splitting algorithm was presented for the constant-temperature DPD method. The original SSA 
formulated for systems of equal-mass particles has been extended to systems of unequal-mass 
particles. Both a velocity-Verlet scheme and an implicit scheme were formulated for the 
integration of the fluctuation-dissipation contribution, where the velocity-Verlet scheme 
consistently performed better. 
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Appendix A. Fokker-Planck Equation (FPE) and Fluctuation-Dissipation 
Theorem (FDT)
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The Fokker-Planck equation (FPE) corresponding to the equations of motion given by equations 
5a and 5b of this report is 

 ρρρ
DC LL

t
+=

∂
∂ , (A-1) 

where ( )t;,prρρ ≡  is the time-dependent probability density, { }N
ii 1=≡ rr  and { }N

ii 1=≡ pp  are 
particle positions and momenta, respectively, and N is the total number of particles.  In equation 
A-1, we have defined the operators 

 







∂
∂
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and 
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r 2
2

2
ω

σ
ωγ , (A-3) 

where im  is the mass of particle i , jiij rrr −=  is the separation vector between particle i  and 

particle j , ijijr r= , C
ijF  is the conservative force acting between particle i  and particle j , ijγ  

and ijσ  are the friction coefficient and noise amplitude between particle i  and particle j , 

respectively, 
j

j

i

i
ij mm

ppv −= , and Dω  and Rω  are weight functions of the dissipative and random 

forces, respectively.  CL  is the Liouville operator corresponding to a Hamiltonian system 
interacting with conservative forces CF . The operator DL  takes into account the effects of the 
dissipative and random forces. 

The equilibrium probability density ( )pr,eqeq ρρ ≡  should be a steady-state solution of the FPE, 

0=
∂
∂

t
ρ .  Thus, the FDT can be derived by imposing that eqρ corresponds to the canonical 

(Gibbs-Boltzmann) probability density: 
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where ( )pr,H  is the Hamiltonian of a dissipative particle dynamics (DPD) system, Z  is the 
normalizing partition function, Bk  is the Boltzmann constant, T is the system temperature, and 

CG
iju is a coarse-grain potential.  0=eq

CL ρ  since the canonical probability density is the 

equilibrium solution for the conservative system. The FDT then follows from the requirement 
0=eq

DL ρ , which is satisfied for 

( ) TkD
ij

R
ij B

22 2 ωγωσ = , 

i.e., for 

 
( ) DR

ijij Tk

ωω

γσ

=

=
2

B
2 2

. (A-5) 

The physical interpretation of the FDT, equation A-5, is the following. In a constant-temperature 
DPD simulation, the system is implicitly connected to a heat reservoir whose temperature 
corresponds to the imposed temperature. During the simulation, heat is exchanged between the 
heat reservoir and the system such that the average temperature of the system equals the 
reservoir temperature. Thus, the FDT indicates that the amplitude of the random-force friction 
coefficient ijσ depends upon the system temperature. 
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Appendix B. Simulation Model Details



 22 

For the models considered in this work, the details of the conservative forces expressed in 
equation 2 of the main text are the following: CG

iju  for the pure and binary dissipative particle 

dynamics fluids1 is given by 

 ( )ij
D

cij
CG
ij rrau ω=  (B-1) 

where ija  is the maximum repulsion between particle i  and particle j . 

 

                                                 
1Groot, R. D.; Warren, P. B. Dissipative Particle Dynamics: Bridging the Gap Between Atomistic and Mesoscopic 

Simulation. J. Chem. Phys. 1997, 107, 4423. 



 23 

List of Symbols, Abbreviations, and Acronyms 

DPD  dissipative particle dynamics  

EOM  equations-of-motion  

FPE  Fokker-Planck equation 

FDT  fluctuation-dissipation theorem  

SDEs  stochastic differential equations  

SSA  Shardlow-splitting algorithm  

SSA-VV Shardlow-splitting algorithm-velocity Verlet  

SSA-I  Shardlow-splitting algorithm-implicit  

SVV  standard velocity-Verlet 
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